Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Gang Xue, Wentao Yu and Qi Fang*

State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong Province, People's Republic of China

Correspondence e-mail: fangqi@icm.sdu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.026$
$w R$ factor $=0.068$
Data-to-parameter ratio $=25.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4,5-Methylenedithio-1,3-dithiol-2-one

The methylene C atom of the title compound, $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{OS}_{4}$, deviates by 0.703 (2) A from the mean plane of the eight other non-H atoms. The molecular packing is characterized by some short S. .S interactions between neighbouring molecules.

Comment

With the development of charge-transfer salts, single-component molecular conductors have attracted more and more attention for their structural novelty and electrical conductivity (Tanaka et al., 2001). The title compound, (I), serves as the precursor of a kind of single-component molecular conductor. We report here the crystal structure of (I).

(I)

The bond lengths and angles of (I) (Fig. 1) are similar to those of an analogous compound 4,5-methylenedithio-1,3-di-thiole-2-thione (Liu et al., 2003). In (I), C1-O1 at 1.2023 (16) \AA is a typical $\mathrm{C}=\mathrm{O}$ double bond and the $\mathrm{C} 2-\mathrm{C} 3$ bond is a $\mathrm{C}=\mathrm{C}$ double bond with a length of 1.3414 (17) \AA. The six S-C bonds have lengths in the range 1.7324 (13)1.7824 (14) Å, which are between those of typical single S-C and double $\mathrm{S}=\mathrm{C}$ bonds. The $\mathrm{S} 3-\mathrm{C} 4$ and $\mathrm{S} 4-\mathrm{C} 4$ bonds, involving the methylene C atom, are typical single $\mathrm{S}-\mathrm{C}$ single bonds, with lengths of 1.8110 (14) and 1.8123 (14) \AA, respectively. Atom C 4 deviates by 0.703 (2) \AA from the least-squares plane of the eight other non-H atoms.

As shown in Fig. 2, there are some short S \cdots S interactions between neighbouring molecules. The $\mathrm{S} 1 \cdots \mathrm{~S} 1(1-x,-y$, $1-z), \mathrm{S} 1 \cdots \mathrm{~S} 3(2-x,-y, 1-z)$ and $\mathrm{S} 3 \cdots \mathrm{~S} 3(2-x,-y$, $1-z$) contact distances are 3.4969 (6), 3.4848 (5) and 3.5906 (6) A, respectively, which are shorter than the sum of the van der Waals radii. In addition to the above interactions, a weak $\mathrm{C} 4-\mathrm{H} 1 B \cdots \mathrm{O} 1(1+x, 1+y, z)$ interaction $[\mathrm{C}-\mathrm{H}=$ $0.97 \AA, \mathrm{H} \cdots \mathrm{O}=2.55 \AA, \mathrm{C} \cdots \mathrm{O}=3.2808$ (19) \AA and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ $=132^{\circ}$] is also observed.

Experimental

4,5-Methylenedithio-1,3-dithiole-2-thione (Kato et al., 1984) (0.5 g) and $\mathrm{Hg}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(1.2 \mathrm{~g})$ were added to a chloroform-acetic acid mixture ($3: 1,60 \mathrm{ml}$). The solution was stirred at room temperature for 20 min . The yellow precipitate was filtered off and the filtered solution was washed with water, with a saturated aqueous NaHCO_{3} solution and then again with water. It was then filtered to give a clear

Received 10 January 2005
Accepted 18 January 2005 Online 29 January 2005
solution to which was added methanol. After one week, pale yellow crystals were formed on slow evaporation of the solvent at room temperature.

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{OS}_{4}$
$M_{r}=194.30$
Monoclinic, $P 2_{d} / c$
$a=7.8361$ (6) A
$b=4.0090(3) \AA$
$c=21.572$ (2) \AA
$\beta=97.586(7)^{\circ}$
$V=671.76(10) \AA^{3}$
$Z=4$

$$
D_{x}=1.921 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 39
reflections
$\theta=5.2-15.6^{\circ}$
$\mu=1.32 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, pale yellow
$0.52 \times 0.44 \times 0.40 \mathrm{~mm}$

Data collection

Bruker P4 diffractometer
ω scans
Absorption correction: ψ scan
(XSCANS; Bruker, 1996)
$T_{\text {min }}=0.498, T_{\text {max }}=0.597$
3180 measured reflections
2140 independent reflections
1763 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.023 \\
& \theta_{\max }=31.0^{\circ} \\
& h=-1 \rightarrow 11 \\
& k=-5 \rightarrow 1 \\
& l=-31 \rightarrow 31 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0336 P)^{2}\right. \\
& +0.107 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.33 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXTL } \\
& \text { Extinction coefficient: } 0.061 \text { (2) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

C1-O1	$1.2023(16)$	$\mathrm{C} 2-\mathrm{S} 3$	$1.7504(12)$
C1-S1	$1.7721(14)$	$\mathrm{C} 3-\mathrm{S} 2$	$1.7324(13)$
C1-S2	$1.7824(14)$	$\mathrm{C} 3-\mathrm{S} 4$	$1.7559(13)$
C2-C3	$1.3414(17)$	$\mathrm{C} 4-\mathrm{S} 3$	$1.8110(14)$
C2-S1	$1.7343(13)$	$\mathrm{C} 4-\mathrm{S} 4$	$1.8123(14)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{S} 1$	$123.84(11)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 4$	$117.16(10)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{S} 2$	$122.96(11)$	$\mathrm{S} 2-\mathrm{C} 3-\mathrm{S} 4$	$124.97(7)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	$113.20(7)$	$\mathrm{S} 3-\mathrm{C} 4-\mathrm{S} 4$	$108.83(7)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{S} 1$	$118.08(10)$	$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1$	$95.44(6)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{S} 3$	$117.33(10)$	$\mathrm{C} 3-\mathrm{S} 2-\mathrm{C} 1$	$95.38(6)$
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{S} 3$	$124.59(7)$	$\mathrm{C} 2-\mathrm{S} 3-\mathrm{C} 4$	$91.04(6)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 2$	$117.86(10)$	$\mathrm{C} 3-\mathrm{S} 4-\mathrm{C} 4$	$91.02(6)$

The H atoms were positioned geometrically and allowed to ride on their attached atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Bruker, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figure 1
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
A packing diagram of the title compound. Dashed lines denote $\mathrm{S} \cdots \mathrm{S}$ short contacts.

This work was supported by the National Natural Science Foundation of China (grant Nos. 20172034 and 20472044).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Bruker (1996). XSCANS. Version 2.2. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Kato, R., Kobayashi, A., Sasaki, Y. \& Kobayashi, H. (1984). Chem. Lett. pp. 993-996.
Liu, Z., Yu, W.-T., Tao, X.-T. \& Jiang, M.-H. (2003). Z. Kristallogr. New Cryst. Struct. 218, 543-544.
Tanaka, H., Okano, Y., Kobayashi, H., Suzuki, W. \& Kobayashi, A. (2001). Science, 291, 285-287.

